Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures
نویسندگان
چکیده
منابع مشابه
On Trivial Gradient Young Measures
We give a condition on a closed set K of real n mma trices which ensures that any W p gradient Young measure sup ported on K must be trivial the condition given is also necessary when K is bounded Introduction Assume is a smooth bounded domain in R and p is a given number Let W p R be the usual Sobolev space of maps u from to R the Jacobi or gradient matrix ru of u is L integrable and thus de n...
متن کاملNonexistence of Random Gradient Gibbs Measures in Continuous Interface
We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are " gradient Gibbs measures " describing an infinite-volume distribution for the increments of the fiel...
متن کاملGibbs Measures and the Young Bouquet : Work of A
Abstract: There is a very close relationship between the characters of the infinite symmetric group and the infinite dimensional unitary group U(∞) which is not captured by attempts to extend the classical Schur-Weyl duality. In a recent paper, Borodin and Olshanski introduce a new object “the Young bouquet” to explain this connection. I will also relate their work to my 1992 paper on infinite ...
متن کاملFree Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory
In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...
متن کاملFrom Bosonic Grand-canonical Ensembles to Nonlinear Gibbs Measures
In a recent paper, in collaboration with Mathieu Lewin and Phan Thành Nam, we showed that nonlinear Gibbs measures based on Gross-Pitaevskii like functionals could be derived from many-body quantum mechanics, in a mean-field limit. This text summarizes these findings. It focuses on the simplest, but most physically relevant, case we could treat so far, namely that of the defocusing cubic NLS fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2014
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-014-1903-6